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Abstract 

Starting from a "singlet" state vector for two correlated systems we find an observable 
whose expectation is 3 according to quantum mechanics, while it has a maximum value of 
1 if only state vectors of the first type are considered. This allows a much easier experi- 
mental check of the hitherto unobserved state vectors of the second type than suggested 
by Bell's inequality. 

1. Introduction 

Given two quantum mechanical systems S and T if the complex Z = S + T 
has a state vector 

1~:,= t ¢':,® I¢) (1.1) 

where I ~ ) describes S and i ¢)  describes T, we say that  l'O) is a vector o f  the 
first type. I f  the vector describing g = S + T cannot be written under the form 
(1.1), we say that it is a vector o f  the second type. An example of  such a state 
vector is the singlet state o f  two spin-~ particles, which is given by  

t ~singlet) = (1 /X/~ ) {1 u+) [ v_) - J u_) I v+)} 

where I u+) are states for the first particle with third component  of  the spin 
equal to -+½k, respectively, and I v+) similarly describes the spin of  the second 
particle. 

It is easy to  show that  I r/singlet) cannot be written under the form (1.1). 
The distinction between these two types o f  state vectors has received 

increasing at tention in recent years (D'Espagnat, 1965; Jammer, 1974; Jauch, 
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1971) when it has been realized, on the one hand, that most of the unresolved 
fundamental difficulties of quantum mechardcs (EPR-type paradoxes, theory 
of measurement and "reduction of the wave-packet", unreconciliability with 
local causality) can be traced back to the existence of state vectors of the 
second type, and, on the other hand, that no direct experimental verification 
of the existence in nature of such vectors exists. 

A concept useful to the experimental distinction between the two types 
of vectors is that of sensitive observables, which are defined as those observ- 
ables whose expectation value over a statistical ensemble of Nidentical pairs 
of systems S + T is different according to whether the N pairs are described by 
a mixture of state vectors of the first type, or by a state vector of the second 
type (Capasso et al., 1973). 

J .  S. Bell (1963) has obtained an inequality (see also Clauser et al., 1969; 
Wigner, 1970), arising solely from the hypothesis of local hidden variables, 
which can be written 

IP(ab) -P(ab')l  + IP(a'b) +P(a'b') I ~ < 2 (1.2) 

where P(ab) is a correlation function measured when the first (second) apparatus 
parameter is set to the value a(b). For instance a and b could indicate the 
direction of the axes of two polarizers. 

According to qum~tum mechanics the left-hand side of (t .2) can be as large 
as 2X/2, thus showing that quantum mechanics cannot be generalized to a 
local hidden-variable theory. It has been shown in Capasso et al. (1973) that 
essentially the left-hand side of (1.2) is a sensitive observable, since all state 
vectors of the first type always satisfy the inequality (1.2). 

It has recently been found that a general theorem exists (which we wilt 
call Theorem F) that allows a much easier experimental test of the existence 
of state vectors of the second type than the one deduced from Bell's theorem. 

2, A Sensitive Observable for Two-Photon Polarization 

in Fortunato and Selleri (i976) the following theorem has been proved : 

Theorem F. If It/>, is a state vector of the second type for two 
correlated systems S and T the projecton operator 

P n -  tr/x r/I (2.1) 

represents a sensitive observable for the system S + T. 

We will show in the following that a straightforward application of the 
previous theorem allows one to suggest an experiment that should provide a 
new and meaningful test of the quantum mechanical description of two corre- 

lated photons. 
Two photons with total angular momentum equal to zero are described by 

the state vector (of the second type) 
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1{ 1 Ir /o)=v~ f x ) l y ' } - l y ) I x ' )  (2.2) 

where [x ) and Iy) are state vectors for the first photon with linear polarization 
along the x andy axes, respectively, and Ix'), ly ' )  similarly describe the second 
photon. From (2.1) one deduces that 

Fo = ½{Ix)Ix I ® ly ' )(Y'  I + [Y)(Y I ® Ix')(x' I- ly)(xl ® Ix')(y'l 
- I x ) ( y t  @ ly')(x'l} 

If one puts 
I + R  ~ P+iQ 

I x > ( x l -  2 ' I x ) ( y [ -  2 

1 - R  e - i Q  
] y ) ( y  I'- , ] y ) ( x [ -  

2 2 

(2.3) 

(2.4) 

with P, Q, R Hermitian operators, and if one defines in a similar way P', Q', R '  
in terms of Ix' ) (y '  l, and so on, one obtains 

Po=¼(1 -.P @ P'- a @ Q'-R @ R'} (2.5) 

The physical meaning of the operators P, Q, R and P', Q',R'is easily obtained 
by noticing that their eigenstates and eigenvalues are given by 

RIx)=lx) 
(2.6) 

R ly)  = - ly) 

p[IX) + lY)~_ Ix} + lY) 

p{IX)-  IY!] I x ) - I Y )  
(2.7) 

l x ) + i l y 9  Ix>+ily) 

(2.8) 
[Ix)- i ly))  Ix ) - i l y )  

Therefore the only eigenvalues of P, Q, R are + 1 and their eigenstates are 
linear polarization states along x and y (for R), !inear polarization states along 
45 ° and -45  ° (for P), circular polarization states, clockwise and anticlockwise 
(for Q). Strictly similar interpretations hold for P', Q', R'. 

In terms of expectation values one gets from (2.5) 

(Po) = ¼ [1 - ( ~ ' )  - (.~.~ '} - ( ~ ' ) ]  (2.9) 
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where ~ is the polarization observable corresponding to P and so on. 
Now the essential point is that the observable Po is sensitive (Theorem F), 

which imples that ( F  o) is different if calculated over the state t~o) or over 
any mixture of  state vectors of  the first type. In fact 

(~/o I Po I no > = 1 (2.10) 

from the very definition of  Po, while if one considers the most general state 
vector of  the first type for two photons : 

If> = 13'>13"> 

13'}=a Ix)+ b ly) (2.11) 

13" )= c tx') + d ly') 

with 

tat  2 + l b l  2 =  lcl  2 + l d l  2 =  1 (2.12) 

a simple calculation shows that  

( ~ l F o l ~ > = ¼ [ 1 - 2 x A ' -  l x / i - 2 -~x / l ' ±Zx"2  c o s ( ~ - ~ ' ) ]  (2.13) 

where 

2x= l a l 2 - l b l  2 , A ' r - l c l 2 - 1 d l  2 (2.14) 

q, = l l n  a*b cb'= -1 In __c*d ( 2 . 1 5 )  
i l a l ' l b t '  i I c l ' [ d l  

The maximum value of  ( ~ t I'o l ~ ) is easily shown to be obtained when 

_ ~5' = nn (n integer odd) 
(2.26) 

A' = - -A 

and when 

~5 _ q~' = nn (n integer even) 
(2.16') 

A ' =  - A  = -+1 

In both cases one has 

( ~ I FO I ~ }max = ½ (2.17) 

The large difference between (2.10) and (2.17) should arrow a rather easy 
experimental discrimination between state vectors of  the first and o f  the 
second type. 

Incidentally this result makes quantitative a difference that Theorem F 
states only in a qualitative way. 

In the case of  a mixture of  N identical pairs of  photons nl of  which with 
state vector (of  the first type) 1~1 ), n2 of  which with [~2), and so on (Zini = N) 
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one obviously has 

( F o } = ~  <~tPol~,)~<~. ni ~ - (2.18) ~v N (~il P° t~i)max = ~ .  1 1 
~ 2 2 

Therefore the result (2.17) holds for an arbitrary mixture of vectors of the 
first type. 

3. Empirical Consequences 

From (2.9), (2.10), and (2.17) it follows 

__{ ~a ~ ' } _ _ (  ~..~ ')__( *~ ~- ' ) = 3  (3.1) 

if the two correlated photons are described by the state vector of the second 
type t %), while 

- ( ~ '  ) - ( ~.~' ) -- ( ~ t ' )  ~ 1 (3.2) 

if they are described as an arbitrary mixture of state vectors of the first type. 
The difference between the two previous relations is similar to the one 

obtained from Bell's inequality, which is always satisfied by state vectors of 
the first type but is violated by those of the second type. It is therefore inter- 
esting to compare (3.2) with Bell's inequality. 

1. The first idea would be to try to deduce (3.2) from local causality. We 
did not succeed in so doing, but the problem deserves a more careful analysis. 

2. The expectation values of products of dichotomic observables ( ~ # ' ) ,  
( ~ ' ) ,  and ( ~ '  }, entering into (3.2), are strictly analogous to the corre- 
lation functions [P(ab),.. ] entering into Bell's inequality [see equation 
(1.2)]. The only difference is that they are calculated for equal values of the 
parameters a and b entering P(ab). A change of notation perhaps makes clearer 
these points :One could write 

< # # '  ) = P(45 °, 45 °) 

(.~ a ' )  = P(RHC, RHC) (3.3) 

< ~ '  ) = e (0  o, 0 o) 

where 0 ° indicates a transmission measurement of a photon through a polarizer 
with polarization axis along x; 45 ° indicates the same with polarization axis at 
45°; RHC indicates a transmission measurement of a photon through a right- 
handed circular polarizer. 

3. The difference between the upper limit of (3.2) and the quantum 
mechanical prediction (3.1)is considerably larger than the similar difference 
for Bell's inequality. In fact one is comparing a 200% difference with a ~42% 
difference. Careful consideration of the efficiencies of the polarizers (Home, 
1969), which reduces by about a factor of two the observable gap in Bell's case, 
should not be so essential in the present case. 
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4. The different experimental results obtained by Freedman and Clauser 
(1972) and by Holt and Pipkin (1975) might be easier to reconcile by measuring 
the correlation functions entering into (3.2). 

The present calculation shows, we think, the power of  Theorem F, whose 
consequences we propose to investigate systematically in a following paper. 

Just as a more general example, it is easy to show that the sensitive observ- 
able corresponding to the state vector 

t n)  = {c~ Ix )  l y ' )  +/3 ly ) Ix '  )} (3.4) 

of  two photons is 

P = ¼ {(1 - R R ' )  + 8 (R - R ' )  +R8 cos ~o(PP' + QQ') +R8 sin ~o(PQ' - QP')} 

(3.5) 
where 

*/3 R~ =X/ i -  ~2, ~ = 1~12- 1/3=1, ~0= Lln 
t l a l ' l / 3 1  

and we can also show that its expectation value over the state l r~) is of  course 
again 1, while its expectation value over a mixture of  state vectors of  the first 
type foltows f rom considerations strictly similar to those of  the previous 
section to be no more than 3(1 + 15 I). 

We consider the present paper a modest  contribution along the line of  
research going f rom the EPR paradox to Bell's inequality. The time seems to 
approach when choices about quantum mechanical paradoxes will be made by 
experiments. 
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